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Stats in 30 minutes 
 
This primer will briefly answer the following questions.  You should read it in advance, bring 
questions about it to class, and consult it as you complete the statistical analysis worksheet. 

 

A. What is a population, what is a sample, and why do we need statistics? 
B. What is a statistical hypothesis? 
C. What does a statistical test actually do? 
D. How is a statistical test carried out? 
E. Do these tests assume anything about my data? 
F. What are the possible outcomes of the test? 
G. How are statistical results reported? 
H. Why does P give the probability of making an error, and why do we set α = 0.05? 
 
A. What is a population, what is a sample, and why do we need statistics?   
 In research, we want to say something definitive about a population, but we have only a 
sample of the population.  Statistics provide a quantitative way to express confidence about a 
conclusion when we have only limited information from a sample. 
 As a first step, we try to make sure by our sampling method that our sample is 
representative of the population as a whole.  But what is “the population,” and what kind of 
sample is representative of it?   The answers depend on the question.  As an example, we might 
ask “do biology majors score higher than chemistry majors on their first organic chemistry 
exam?”  The “population” could include any and all biology or chemistry majors that are currently 
taking, have taken, or could take organic chemistry.  We could restrict the population of interest in 
various ways, for example, to students in the USA, or students at CofC, or students in their 
sophomore year, or students taking the course this year.  If we could measure every one of the 
students in that population, we could say definitively (without statistics) whether there is an 
average difference in scores between students in the two majors.  It is more realistic, however, to 
measure representative samples.  Then we can make a statement about the probability that the 
populations of the two types of majors differ based on (1) the sample means and (2) an estimate of 
confidence that our sample means represent the population means. 
 To choose a representative sample, we first try to avoid the potential for bias.  In most 
cases, sampling at random from a population helps to provide an unbiased sample of that 



  Statistics Notebook 

2 
 

population.  Students sampled at random from CofC, for example, would be an unbiased sample 
of students at CofC but could be a biased sample of students from the USA (if, for example, one 
of our programs were stronger than the other in an atypical way).  Second, we try to avoid the 
potential for statistical noise (or “sampling error”) by choosing a sample as large as practical, to 
reduce the possibility of getting a set of values in our sample that is atypical of the population.  
Avoiding bias and noise are two of the major issues in designing an experiment or survey. 
 Given a representative (unbiased and large) sample, we can then use inferential statistics 
to draw conclusions about the defined population.  In other words, we can generalize the results 
of analyzing a sample to a larger population that the sample appropriately represents. 
 
B. What is a statistical hypothesis?   
 Imagine a bar graph of average organic chemistry scores for biology and chemistry 
majors.  The two bars will differ in height—it is extremely unlikely that the averages will be 
exactly the same.  But is this difference in means between samples large enough to conclude that 
the populations really differ?  To answer this question, we use sample data to determine how 
likely it is that the difference in means between samples could have been due to chance rather 
than to a real difference between populations. 
 

For any statistical test we define two alternative statistical hypotheses: 
• the null hypothesis (Ho): the result expected if there were no relationship between variables  
• the alternative hypothesis (Ha): the result expected if there were a predicted relationship 

between variables (either a difference between groups or a correlation between variables) 
Why do we bother setting up such formal alternatives?  The answer has to do with how science 
works, by a process called falsification: we assume by default that there is no relationship (the 
null hypothesis) unless we have strong enough evidence to reject the null.  This process reflects 
the conservative nature of science—we do not accept a new, alternative idea unless the evidence 
is highly convincing.  In fact, a typical criterion for “rejecting the null hypothesis in favor of the 
alternative”* is that the relationship must be so convincingly strong that it would occur by 
chance (that is, because of a chance sampling error) no more than 5% of the time. 
 
C. What does a statistical test actually do?   
 For any statistical test, we start with a simple assumption.  We then evaluate whether 
there is strong enough evidence to reject this assumption. 
 

 Assumption: The null hypothesis is true. 
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If the null hypothesis were true, we would expect that a test statistic calculated from the data (a 
measure of the strength of the relationship between variables) to equal zero: a null hypothesis 
states, for example, that there is no correlation (r = 0) or no difference between two group means 
(t = 0).  However, because we calculate a test statistic from just a limited (and therefore 
imperfect) sample of a population, it would not be surprising to get small differences from zero 
(positive or negative) in our test statistic just by chance, even if the null hypothesis were true.  
The question is, how large can the test statistic get before we begin to suspect that it is not due to 
chance (and that the null hypothesis, in 
fact, is probably not true?) 
 Imagine repeating the same data 
collection 1000 times, still assuming the 
null hypothesis is true.  Each time, you 
take a new sample from your population 
and calculate a new test statistic.  If you 
compiled all your test statistics, they 
would form a normal distribution 
centered at zero (see right).  Most values 
should be close to zero, and fewer would 
be extreme (large or small).  That is, 
there is a high probability of getting a 
small value and a low probability of 
getting an extreme value, just by chance.  
[Q: Statisticians can generate this 
probability distribution just by knowing the sample size.  How would you expect the width of the 
curve to change depending on the size of the samples used to calculate the test statistic?] 
 The problem is, in research you often have the result of only one such experiment.  So, 
what is the probability of getting the test statistic that you got (remember, assuming the null 
hypothesis is true) just by chance?  That probability (called the P-value) can be found by seeing 
where your test statistic falls on this distribution.  In Fig. 1, test statistic t2 falls a certain distance 
from 0, associated with a certain probability (P) of getting a value that extreme just by chance 
even if the null hypothesis were true.  The value t1 is closer to 0, so has a higher probability, 
while t3 is further from 0, so has a lower probability of occurring by chance assuming the null 
hypothesis were true.  Small test statistics have high probabilities of occurring by chance (and 
large P-values, see Section D), and large test statistics have low probabilities of occurring by 
chance (and low P-values), again assuming that the null hypothesis is true. 
 Because test statistics fall along a continuum, we need some way to say when our value is 
so extreme—that is, when it has such a small probability of having occurred by chance—that we 
question our assumption that the null hypothesis is true.  That criterion is based on α (alpha), a 
threshold probability value that we choose in advance.  We use that threshold to judge when we 
have enough evidence to reject our assumption that the null hypothesis is true.  When P < α, we 
conclude that the probability of our large test statistic occurring by chance is too small to stick 
with the null hypothesis, and instead we reject the null hypothesis in favor of the alternative.  
Conversely, when P > α, we fail to reject the null hypothesis. 
 By convention in biology, α is usually set at 0.05 (see section I).  That is, we decide to 
reject the null hypothesis only when we expect a test statistic as large as ours no more than 5% 
of the time by chance.  In Fig. 1, the shaded areas under the curve together account for 5% of the 
distribution of test statistics expected by chance (each tail has 2.5% of the probability).  The 

0 

 test statistic  
t1 t2 t3 

Fig. 1.  Distribution of a test statistic given the 
assumption that the null hypothesis is true.  Note 
that the probability specified by α is distributed 
equally between the two tails (for a two-tailed test)  
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critical value is the test statistic associated with the probability α = 0.05.  In this example, the 
critical value for our test is at t2, so anything equal to or larger than t2 (or equal to or smaller than 
–t2) provides enough evidence to reject our initial assumption that the null hypothesis is true. 
 
D. How is a statistical test carried out?   
Scientists have access to a dizzying array of statistical tests.  Fortunately, many simple analyses 
can be performed with knowledge of just three tests: the correlation analysis, the t-test, and the 
chi-square analysis.  Which test to use depends on whether the variables are continuous or 
categorical.  See Table 1. to determine when to use each of these tests. 
Regardless of which test is used, the procedure is similar:  
(1) calculate a test statistic,  
(2) compare the test statistic to the threshold critical value (see Critical Value Tables), 
(3) determine a P-value by comparing the test statistic to other values in the table, and 
(4) reach a conclusion to reject the null hypothesis only if P is less than alpha. 
 

Here are the details:  
• What is a test statistic?  A single value computed from your data.  For the three tests you 

will use in this class, the test statistics are r (for correlation analysis), t (for a t-test), and χ2 
(for a “chi-squared” test).  Excel will calculate them or help you to calculate them. 

• What is a critical value?  A threshold value that can be looked up in a table.  If your test 
statistic exceeds the critical value, then the data from which you computed the test statistic 
are highly different from what you would expect if the null hypothesis were true, so any 
relationship you found between variables is unlikely to be due to chance.   Critical values are 
tabulated based on the type of test, the degrees of freedom, and alpha. 

• What are the degrees of freedom?  A number based on the sample size of the data (see 
Table 2.  for how to calculate df for each test).  Because larger samples give greater power to 
detect a relationship between variables, sample size affects the critical value. 

• What is alpha?  A probability value chosen before the data are analyzed.  Because the choice 
of alpha determines the critical value, it also acts as a threshold for decisions about the null 
hypothesis: when the probability of getting your results by chance is less than alpha (that is, 
your test statistic is greater than the critical value), the null hypothesis is rejected in favor of 
the alternative.  Alpha is typically set at 0.05 (see section H). 

• What is the P-value?  A probability value calculated from your data.  P is the probability that 
the relationship between variables measured from your sample is due to chance rather than to 
an actual relationship in the population.  It is also, therefore, the probability that you are 
making an error by rejecting your null hypothesis (see Section H). 

 
E. Do these tests assume anything about my data? 
Yes, but many tests work even with small violations of these assumptions, so we will not worry 
here about testing them.  The kinds of statistical tests you will use make just a few basic 
assumptions that are worth knowing about: 
• Data points are assumed to be independent of one another.  For example, when measuring 

scores on an organic chemistry exam, we assume that each student’s score is independent of 
the scores of other students (not always the case!). 
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• Any statistical test fits the data to some kind of model, which is an ideal representation of 
how the data are patterned.  Real data points always deviate from the ideal model.  The size 
of those deviations (known as residuals) are assumed to have a normal (bell-shaped) 
distribution, with many more measurements close to the average and progressively fewer 
toward the tails.  This kind of distribution will be true for many types of data. 

• The t-test assumes that measurements for the two groups you are comparing have equal 
standard deviations.  If the standard deviations you calculated are not terribly different, you 
probably meet this assumption.  If they are terribly different, a version of the t-test is 
available that can account for this difference in standard deviations. 

 
F. What are the possible outcomes of the test? 
• Conventionally there are two possible outcomes: (a) failure to reject the null hypothesis, or 

(b) rejection of the null hypothesis in favor of the alternative hypothesis.  It is incorrect to 
state that the test leads acceptance of the null hypothesis or proof of either hypothesis. 

• Rejection of the null hypothesis does not necessarily imply a mechanism for the relationship.  
The effect could be due to some other mechanism you didn’t propose. 

• Rejection of the null hypothesis—a statistical outcome—does not necessarily mean that the 
effect has great biological significance.  As a biologist, it is still necessary to consider the 
magnitude of an effect when judging its biological importance. 

 
G. How are statistical results reported?   
 To report the outcome of a statistical test, one states a conclusion along with the test 
statistic, degrees of freedom, and P-value (the latter three often in parentheses).  For example: 
 

 “There was no significant difference between the means of the two groups (t = 0.45, df = 
134, P > 0.05)”.   

H. Why does P give the probability of making an error, and why do we set α = 0.05? 
We have established that the P-value is the probability of getting a test statistic as extreme as 
ours by chance if the null hypothesis were true.  If P is small enough (less than alpha), we decide 
to reject the null hypothesis in favor of the alternative.  But of course there is still some 
probability (given by P) that the null hypothesis is true and we just happened to get one of those 
extreme sampling errors.  The P-value is therefore a statement of confidence about a decision to 
reject the null.  For example, if the test concludes that P < 0.02, we have strong confidence that 
less than 2% of the time, with a test statistic as large as the one we calculated, we will be making 
an error by rejecting the null hypothesis. This type of error—rejecting the null hypothesis when it 
is in fact true, known as a “false positive”—is called a Type-1 error.  Alpha is therefore the 
upper limit on the type-1 error we are willing to tolerate when performing the test. 
 A second type of error, called a Type-2 error (or a “false negative”), involves failing to 
reject the null hypothesis when it is in fact false (in the whole population).  In science, we 
generally guard against Type-1 errors more than against Type-2 errors.  The reason is that 
science is conservative—it does not accept new ideas (alternative hypotheses) until there is 
strong evidence.  Setting α higher (e.g., 0.1) would lead to rejecting the null hypothesis more 
often, but with a higher number of false positives.  Setting α lower (e.g. 0.01) would reduce the 
false positives, but could make it unreasonably hard to reject the null hypothesis, and create more 
false negatives.  The value α = 0.05 is a compromise.  In some fields, however, a lower value for 
α is chosen because there are especially high costs of a Type-1 error.  For example, a 
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pharmaceutical company might want especially strong evidence that a new drug works 
significantly better than the current drug before it invests millions of dollars in R&D.  It would 
set a low α = 0.01 in order to conservatively guard against concluding there is a real difference 
between drugs in case there isn’t. 
 
Note: information in section I is optional for this course, but will be interesting and useful for 
those who want to build their understanding of statistical testing.  
 
.
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TABLE 1.  Which statistical test should I use? 
 

If you are 
testing the 
relationship 
between… 
 

use this 
test… 

 

to answer this question… involving these statistical 
hypotheses… 

to reach this kind of 
conclusion… 

2 continuous 
variables 

Correlation 
analysis 

Is there a statistical tendency 
for high measures of one 
variable to be associated with 
high (or low) measures of 
another variable?   

Ho : there is no association between 
variables 

Ha: there is an association (positive 
or negative) between variables 

If the association is stronger 
than is likely by chance, the 
variables are said to be 
significantly positively (or 
negatively) correlated. 

1 categorical 
variable & 
1 continuous 
variable 

t-test Is there statistical evidence that 
the mean of one group is 
significantly different from the 
mean of a second group?   

Ho : there is no difference in the 
average between groups 

Ha: there is a difference (positive or 
negative) in the average 
between groups 

If the difference between means 
(relative to the standard error) 
is more extreme than expected 
by chance, then the difference 
is said to be statistically 
significant. 

2 categorical 
variables 

Chi-square 
test 

Is there a statistical tendency to 
belong to a particular category 
in one variable if a subject 
belongs to a particular category 
in the other variable? 

Ho : there is no association between 
two categorical variables 

Ha: there is an association (positive 
or negative) between the two 
categorical variables 

If the association is stronger 
than is likely by chance, the 
variables are said to be 
significantly associated with 
one another. 

TABLE 2.  Test statistic, calculation of sample size and degrees of freedom for different tests 
 

Statistical test Test statistic Sample size Degrees of 
freedom 

Correlation 
Analysis 

r N = number of subjects with paired measurements of the two variables N–2 

t-test t N = total number of measurements taken in both groups unless it is a paired 
t-test in which case it is simply the number of samples in one group.  

N–2 

Chi-square test χ2 N = total number of subjects measured 
C1 & C2 = number of categories in variables 1 & 2 

C1-1 x C2-1 

 



 

8 
 

Using the t-Test to Test Differences between Means 
One very common use of statistics is to figure out whether two things are different.  For 
example, you may wish to know whether one brand of fertilizer causes corn to grow any better 
than another brand of fertilizer, or whether male frogs weigh more than female frogs, or whether 
a toxic compound causes mice to grow more slowly (relative to a control).  This boils down to a 
test of differences between two means. 
 
More formally, we wish to test the null hypothesis: 

 
210 : µµ =H  

 
µ (the Greek letter mu) is an abbreviation for the population mean.  This refers to the average 
you would theoretically get if you sampled an infinite population. 
 
The subscripts 1 and 2 refer to population 1 and population 2.  In most cases, one of the 
populations will be the treatment and the other will be the control, but this will not always be the 
case.  For example, 1 could refer to males and 2 to females. 
 
Also "population" as used here is a statistical term, not a biological one.  "Population" could 
mean the set of all test tubes or Petri plates, or it could mean a real population such as all male 
frogs. 
 
The most widespread method to test for differences in means is the Student's t-test.  The test 
statistic for the t-test is, not surprisingly, t.  You get t from the following equation: 

             

2
2

1
2

21

// 21 NsNs

xx
t

+

−
=  

where  
 
x 1 is the mean value for population 1 
 
x 2 is the mean value for population 2 
 
s21 is the variance for population 1 
 
s22 is the variance for population 2 
 
N1 is the number of observations for population 1 
 
N2 is the number of observations for population 2 
 

If the means are similar, then t will be close to zero, but if the means are different, then t will be 
very large.  To determine whether the differences are significant, you need to calculate the 
degrees of freedom (d.f.): 
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d.f. = N1 + N2 - 2. 
 
Locate the critical value of t in a t-table, using the  p = 0.05 (recall that this is the conventional 
number) for the column and the degrees of freedom you just calculated as the row.  If the value 
of t you calculated is greater than this critical value, then you can reject the null hypothesis of 
equal means. 
 
The Student's t-test as described here is only one kind of t-test.  Thus you need to be careful that 
you use the equation here only for testing differences between means. 
 
EXAMPLE 
 
It has been speculated that plants increase the amount of defense compounds in response to 
herbivory.  To test this, an ecologist excluded caterpillars from five randomly selected milkweed 
plants, and allowed caterpillars to feed on five others.  After one day, the caterpillars were 
removed and alkaloids (a kind of defense compound) were extracted from each plant and 
measured.  The null hypothesis is  

 
H0: µc = µnc   
 

where µ is the mean alkaloid content, and c and nc refer to caterpillars and no caterpillars, 
respectively.  More informally (but perfectly acceptable): 
 

H0: Milkweed plants that have been grazed by caterpillars have the same alkaloid content as 
ungrazed milkweed plants. 

 
The alternative hypothesis is:  

 
HA: µc ≠ µnc   
 
or HA: Milkweed plants that have been grazed by caterpillars do not have the same alkaloid 
content as ungrazed milkweed plants. 

 
The data obtained from the grazed plants are, in micrograms of alkaloid per gram of leaf tissue: 
 
      3.4, 4.5, 3.6, 3.7, 3.9 
 

The mean and standard deviation for this treatment are 3.82 and 0.421, respectively. 
 
The data obtained from the ungrazed plants are: 
 

   2.8, 3.4, 2.9, 3.1, 2.8 
 

The mean and standard deviation for this treatment are 3.00 and 0.255, respectively. 
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To calculate t: 

               726.3
0130.00354.0

82.0
5/255.05/421.0

00.382.3

// 2222
=

+
=

+

−
=

+

−
=
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ncc
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xx
t  

 
 
To calculate degrees of freedom: d.f. = Nc + Nnc - 2 = 5 + 5 - 2 = 8 
 
The critical t value (tcrit) for 8 degrees of freedom and p=0.05 is 2.306.  Since our calculated t 
(3.726) is greater than 2.306, we can conclude: 
 

"We reject H0 at p=0.05"  or "We reject the null hypothesis that grazed and ungrazed 
milkweed plants have the same alkaloid level". 
 

In other words, there is less than a 5% chance (or 1 in 20 chance) that we would have found a t 
value as large as 3.726 just due to chance.  To compute an exact p-value you must use software 
like the R programming language.  
 
 

Testing for Associations between Categorical Variables 
Frequently we do not have fine grained information on our independent and dependent variables 
and instead we have qualitative categorical groupings of variables such as high and low 
resources or fast and slow speed. If we wish to test for an association between samples from a 
“high” group to also be “fast” then we can use a Chi-square (χ2) test. 

We arrange our two groups into what is called a contingency table.  Here I’ve just come up with 
some pretend counts of samples that were grouped into both groups simultaneously.  

 Fast Slow 
High 20 10 
Low 8 20 

 

In this pretend example there were 20 samples that were both in the “high” group and that were 
classified as “fast”. The table at least suggests that there may be association between the two 
groups because most samples in the high group are fast and most in the low group are slow.  

We can use a χ2 test to formally test this hypothesis.  

H0 = no association between the two sets of groups 

H1 = there is an association between the sets of groups.   

 

Test statistic:  
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𝑋𝑋2 = ��
(𝑂𝑂𝑖𝑖,𝑗𝑗 − 𝐸𝐸𝑖𝑖,𝑗𝑗)2

𝐸𝐸𝑖𝑖,𝑗𝑗

𝑟𝑟

𝑖𝑖=1

𝑐𝑐

𝑗𝑗=1

 

c = number of columns 

r = number of rows 

Oi,j = observed count in the cell of the ith row and the jth column 

Ei,j= expected count in the cell of the ith row and the jth column 

 

Degrees of freedom for the test are 

d.f. = (r – 1) * (c – 1)  

The expected counts are generated by assuming that counts are arranged randomly in the table 
while using the observed constrains on the total number of samples that were found in each row 
and column.  

 

Here is an example in which we have recorded the swim speed of fish (fast or slow) that were 
provided a diet either High or Low in calories. We can use a chi-square test to test if there is an 
association between diet and swim speed. Specifically, in this context the null hypothesis is:  

H0: there is no association between diet and swim speed 

HA: there is an association between diet and swim speed  

Here is our results including the row and column totals for the ith row (Ri) and the jth column 
(Cj) 

 Fast Slow Ri 
High 20 10 30 
Low 8 20 28 
Cj 28 30 58 

 

Under the assumption of no association between the rows and columns we can generate the 
expected values Ei,j using the product of the row and column totals divided by the grand total of 
the table 

𝐸𝐸𝑖𝑖,𝑗𝑗 =
∑ 𝑂𝑂𝑖𝑖,𝑗𝑗𝑐𝑐
𝑗𝑗=1 ∗ ∑ 𝑂𝑂𝑖𝑖,𝑗𝑗𝑐𝑐

𝑖𝑖=1

∑ ∑ 𝑂𝑂𝑖𝑖,𝑗𝑗𝑗𝑗𝑖𝑖
=
𝑅𝑅𝑖𝑖 ∗ 𝐶𝐶𝑗𝑗
𝑇𝑇

 

Ri = total of row i 

Cj = total of row j 
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T = grand total of all observed values  

 

For our example the table of expected value is:  

 Fast Slow 
High 14.48 15.52 
Low 13.51 14.48 

 

Once the expected values are calculated the χ2 value can be computed by comparing to the 
observed values.   

For our example the table of chi-squared values is  
 

Fast Slow 

High 2.10 1.96 

Low 2.25 2.10 

The sum of all of those value is the chi-squared value, χ2 = 8.41, the degrees of freedom are 1 (= 
(# rows – 1) * (# columns - 1)).  

For a 2x2 table the critical value is 3.84 and because our χ2 is so much larger than this we can 
conclude that statistically we can reject the null hypothesis. Biologically our conclusion is that 
there is an association between diet and swim speed. Specifically, our example result shows that 
high calories result in faster swim speeds.   

Important Note 

Above I provided many different tables to show how the calculation is broken down into steps. 
However, for the presentation of a chi-square test only the contingency table is needed. Here is 
how these results would be reported in the Results section of a scientific paper, poster, or talk:  

Table 1. The swim speeds (fast or slow) of fish provided a diet that was either high or low in 
calories (χ2 = 8.41, d.f = 1, p < 0.05). 

 Fast Slow 
High 20 10 
Low 8 20 

 

If you wish to compute the p-value directly rather than comparing your χ2 value to a critical 
value then you will need to use statistical software to carry out the calculation like the R 
programming language.  
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resiTesting for Correlations between Continuous Variables 
 

Correlation tests relationships between two variables.  You need to identify an independent 
variable (x variable) that is often considered the causative agent, and a dependent variable (y 
variable) that is thought to be affected by x.  (Do note, however, that correlation does not prove 
causation.  This will be discussed shortly). 
 
For example, x might equal the number of leaves on a dandelion plant produced in the fall, and y 
might equal the number of flower heads produced in the spring.  We might expect more flowers 
to be produced if the plant had more leaves during the past growing season - this might be 
because plants with many leaves would have more carbohydrates stored up for reproduction. 
 
Our null hypothesis is that the number of leaves is unrelated to the number of flowerheads.  In 
other words, 
 

H0: x is uncorrelated with y 
H1: x is correlated with y 

 
If a graph is made, the x variable is plotted on the x (horizontal) axis and the y variable is plotted 
on the y (vertical) axis.  A simple equation (given later) results in a value known as r or the 
correlation coefficient.  r takes values from -1 to +1. 

 
 
Note that values close to -1 and +1 indicate very strong relationships, those close to zero indicate 
very weak relationships.  Negative r's indicate negative relationships; positive r's indicate 



  Statistics Notebook 

14 
 

positive relationships.  A value of zero indicates no relationship between the variables.  Another 
way of restating our null hypothesis is that the correlation coefficient will equal zero, and our 
alternative hypothesis is that the coefficient will differ significantly from zero. 
 
The following is the formula for r: 
 

( )( )2
i

2
i

ii

yyxx

yyxx
r

∑∑
∑

−−

−−
=

)()(

))((
 

 
 
x  (pronounced "x-bar") is the mean (average) of all the x's, and 
 
y  ("y-bar") is the mean of all the y's.  Therefore: 
 
x  = Σ xi / N      and     y  = Σ yi / N 
 
Where N is the total sample size (e.g. the number of dandelion plants). 
 

One important thing to remember about correlation is that it does not necessarily imply 
direct causation.  For example, suppose that there was an extremely significant positive 
correlation between the number of dandelion leaves and flower heads.  This could be because 
plants that had many leaves were able to produce enough carbohydrates to produce many 
flowers.  However, it is also possible that some plants were in very fertile areas, and had enough 
nutrients to produce many leaves as well as many flowers.  That is, the number of leaves did not 
cause any particular number of flowers, but both leaves and flowers were caused by a third 
factor.  As usual in science, results must be interpreted with caution. 

As long as some variation exists in x and in y, there will be a correlation between the two 
variables.  The correlation may be positive, negative, or close to zero.  It is extremely unlikely 
that a calculated value of r will equal exactly zero.  If it does, then (most likely) the calculations 
were done incorrectly.  Correlation is not the same thing as association, a topic that is dealt with 
elsewhere. 

The value r2 (or R2) is special: it is known as the coefficient of determination.  It can vary 
between zero and one, and can be interpreted as "the proportion of variation in the dependent 
variable that can be explained by the independent variable".  Thus, if you study the relationship 
between body mass of ladybugs and the number of eggs laid, an r2 of 0.72 means that 72% of the 
variation in the number of eggs laid can be explained by body mass.  Conversely, 28% of the 
variation is "unexplained", and one would have to look for other factors such as genetics, habitat, 
diet, or even chance. 

The p-value for the correlation analysis can be determined either by comparing the 
computed r value to a critical r value table or by computing the p-value directly in R. 
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